Method Details


Details for method 'ERFNet (from scratch)'

 

Method overview

name ERFNet (from scratch)
challenge pixel-level semantic labeling
details ERFNet trained entirely on the fine train set (2975 images) without any pretraining nor coarse labels
publication Efficient ConvNet for Real-time Semantic Segmentation
Eduardo Romera, Jose M. Alvarez, Luis M. Bergasa and Roberto Arroyo
IV2017
http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf
project page / code https://github.com/Eromera/erfnet
used Cityscapes data fine annotations
used external data
runtime 0.02 s
Titan X (Maxwell)
subsampling 2
submission date February, 2017
previous submissions 1

 

Average results

Metric Value
IoU Classes 68.0173
iIoU Classes 40.4237
IoU Categories 86.4645
iIoU Categories 70.4017

 

Class results

Class IoU iIoU
road 97.7366 -
sidewalk 80.9941 -
building 89.8331 -
wall 42.4633 -
fence 47.9916 -
pole 56.245 -
traffic light 59.836 -
traffic sign 65.2822 -
vegetation 91.3833 -
terrain 68.1993 -
sky 94.1887 -
person 76.7534 56.6562
rider 57.075 31.4706
car 92.7603 84.9471
truck 50.7691 19.3994
bus 60.0891 35.0554
train 51.8043 24.9675
motorcycle 47.2739 24.266
bicycle 61.6499 46.6273

 

Category results

Category IoU iIoU
flat 98.1759 -
nature 91.1173 -
object 62.4208 -
sky 94.1887 -
construction 90.0565 -
human 77.4251 58.0242
vehicle 91.8675 82.7791

 

Links

Download results as .csv file

Benchmark page