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A. Related Datasets

In Tab. 7 we provide a comparison to other related
datasets in terms of the type of annotations, the meta infor-
mation provided, the camera perspective, the type of scenes,
and their size. The selected datasets are either of large scale
or focus on street scenes.

B. Class Definitions

Table 8 provides precise definitions of our annotated
classes. These definitions were used to guide our labeling
process, as well as quality control. In addition, we include
a typical example for each class.

The annotators were instructed to make use of the depth
ordering and occlusions of the scene to accelerate labeling,
analogously to LabelMe [60]; see Fig. 6 for an example. In
doing so, distant objects are annotated first, while occluded
parts are annotated with a coarser, conservative boundary
(possibly larger than the actual object). Subsequently, the
occluder is annotated with a polygon that lies in front of the
occluded part. Thus, the boundary between these objects is
shared and consistent.

Holes in an object through which a background region
can be seen are considered to be part of the object. This al-
lows keeping the labeling effort within reasonable bounds
such that objects can be described via simple polygons
forming simply-connected sets.

C. Example Annotations

Figure 7 presents several examples of annotated frames
from our dataset that exemplify its diversity and difficulty.
All examples are taken from the train and val splits and
were chosen by searching for the extremes in terms of the
number of traffic participant instances in the scene; see
Fig. 7 for details.

Figure 6. Exemplary labeling process. Distant objects are an-
notated first and subsequently their occluders. This ensures the
boundary between these objects to be shared and consistent.

D. Detailed Results
In this section, we present additional details regarding

our control experiments and baselines. Specifically, we
give individual class scores that complement the aggregated
scores in the main paper. Moreover, we provide details on
the training procedure for all baselines. Finally, we show
additional qualitative results of all methods.

D.1. Semantic labeling

Tables 9 and 11 list all individual class-level IoU scores
for all control experiments and baselines. Tables 10 and 12
give the corresponding instance-normalized iIoU scores. In
addition, Figs. 8 and 9 contain qualitative examples of these
methods.

Basic setup. All baselines relied on single frame, monocu-
lar LDR images and were pretrained on ImageNet [59], i.e.
their underlying CNN was generally initialized with Ima-
geNet VGG weights [68]. Subsequently, the CNNs were
finetuned on Cityscapes using the respective portions listed
in Tab. 4. In our own FCN [41] experiments, we addition-
ally investigated first pretraining on PASCAL-Context [45],
but found this to not influence performance given a suffi-
ciently large number of training iterations. Most baselines
applied a subsampling of the input image, c.f . Tab. 4, proba-
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Dataset Labels Color Video Depth Camera Scene #images #classes

[59] B X × × Mixed Mixed 150 k 1000
[14] B, C X × × Mixed Mixed 20 k (B), 10 k (C) 20
[45] D X × × Mixed Mixed 20 k 400
[38] C X × × Mixed Mixed 300 k 80
[69] D, C X × Kinect Pedestrian Indoor 10 k 37
[19] B, Da X X Laser, Stereo Car Suburban 15 k (B), 700 (D) 3 (B), 8 (D)
[7] D X X × Car Urban 701 32
[35] D X X Stereo, Manual Car Urban 70 7
[61] D × X Stereo Car Urban 500 5
[2] D X × × Pedestrian Urban 200 2
[65] C X × Stereo Car Facades 86 13
[56] D X × 3D mesh Pedestrian Urban 428 8
[75] D X X Laser Car Suburban 400 k 27
Ours D, C X X Stereo Car Urban 5 k (D), 20 k (C) 30
a Including the annotations of 3rd party groups [22, 29, 32, 33, 58, 64, 77, 80]

Table 7. Comparison to related datasets. We list the type of labels provided, i.e. object bounding boxes (B),
dense pixel-level semantic labels (D), coarse labels (C) that do not aim to label the whole image. Further, we
mark if color, video, and depth information are available. We list the camera perspective, the scene type, the
number of images, and the number of semantic classes.

bly due to time or memory constraints. Only Adelaide [37],
Dilated10 [79], and our FCN experiments were conducted
on the full-resolution images. In the first case, a new ran-
dom patch of size 614 × 614 pixels was drawn at each it-
eration. In our FCN training, we split each image into two
halves (left and right) with an overlap that is sufficiently
large considering the network’s receptive field.

Own baselines. The training procedure of all our FCN ex-
periments follows [41]. We use three-stage training with
subsequently smaller strides, i.e. first FCN-32s, then FCN-
16s, and then FCN-8s, always initializing with the parame-
ters from the previous stage. We add a 4th stage for which
we reduce the learning rate by a factor of 10. The train-
ing parameters are identical to those publicly available for
training on PASCAL-Context [45], except that we reduce
the learning rate to account for the increased image reso-
lution. Each stage is trained until convergence on the val-
idation set; pixels with void ground truth are ignored such
that they do not induce any gradient. Eventually, we retrain
on train and val together with the same number of epochs,
yielding 243 250, 69 500, 62 550, and 5950 iterations for
stages 1 through 4. Note that each iteration corresponds to
half of an image (see above). For the variant with factor
2 downsampling, no image splitting is necessary, yielding
80 325, 68 425, 35 700, and 5950 iterations in the respective
stages. The variant only trained on val (full resolution) uses
train for validation, leading to 130 000, 35 700, 47 600, and
0 iterations in the 4 stages. Our last FCN variant is trained
using the coarse annotations only, with 386 750, 113 050,
35 700, and 0 iterations in the respective stage; pixels with
void ground truth are ignored here as well.

3rd-party baselines. Note that for the following descrip-
tions of the 3rd-party baselines, we have to rely on author-

provided information.
SegNet [4] training for both the basic and extended vari-

ant was performed until convergence, yielding approxi-
mately 50 epochs. Inference takes 0.12 s per image.

DPN [40] was trained using the original procedure, while
using all available Cityscapes annotations.

For training CRF as RNN [81], an FCN-32s model was
trained for 3 days on train using a GPU. Subsequently an
FCN-8s model was trained for 2 days, and eventually the
model was further finetuned including the CRF-RNN lay-
ers. Testing takes 0.7 s on half-resolution images.

For training DeepLab on the fine annotations, denoted
DeepLab-LargeFOV-Strong, the authors applied the train-
ing procedure from [9]. The model was trained on train
for 40 000 iterations until convergence on val. Then val
was included in the training set for another 40 000 itera-
tions. In both cases, a mini-batch size of 10 was applied.
Each training iteration lasts 0.5 s, while inference includ-
ing the dense CRF takes 4 s per image. The DeepLab
variant including our coarse annotations, termed DeepLab-
LargeFOV-StrongWeak, followed the protocol in [48] and
is initialized from the DeepLab-LargeFOV-Strong model.
Each mini-batch consists of 5 finely and 5 coarsely anno-
tated images and training is performed for 20 000 iterations
until convergence on val. Then, training was continued for
another 20 000 iterations on train and val.

Adelaide [37] was trained for 8 days using random crops
of the input image as described above. Inference on a single
image takes 35 s.

The best performing baseline, Dilated10 [79], is a convo-
lutional network that consists of a front-end prediction mod-
ule and a context aggregation module. The front-end mod-
ule is an adaptation of the VGG-16 network based on dilated
convolutions. The context module uses dilated convolutions

ii



to systematically expand the receptive field and aggregate
contextual information. This module is derived from the
“Basic" network, where each layer has C = 19 feature
maps. The total number of layers in the context module
is 10, hence the name Dilation10. The increased number of
layers in the context module (10 for Cityscapes versus 8 for
PASCAL VOC) is due to the higher input resolution. The
complete Dilation10 model is a pure convolutional network:
there is no CRF and no structured prediction. The Dila-
tion10 network was trained in three stages. First, the front-
end prediction module was trained for 40 000 iterations on
randomly sampled crops of size 628×628, with learning rate
10−4, momentum 0.99, and batch size 8. Second, the con-
text module was trained for 24 000 iterations on whole (un-
cropped) images, with learning rate 10−4, momentum 0.99,
and batch size 100. Third, the complete model (front-end +
context) was jointly trained for 60 000 iterations on halves
of images (input size 1396×1396, including padding), with
learning rate 10−5, momentum 0.99, and batch size 1.

D.2. Instance-level semantic labeling

For our instance-level semantic labeling baselines and
control experiments, we rely on Fast R-CNN [20] and pro-
posal regions from either MCG (Multiscale Combinatorial
Grouping [1]) or from the ground truth annotations.

We use the standard training and testing parameters for
Fast R-CNN. Training starts with a model pre-trained on
ImageNet [59]. We use a learning rate of 0.001 and stop
when the validation error plateaus after 120 000 iterations.

At test time, one score per class is assigned to each object
proposal. Subsequently, thresholding and non-maximum
suppression is applied and either the bounding boxes, the
original proposal regions or their convex hull are used to
generate the predicted masks of each instance. Quantitative
results of all classes can be found in Tables 13 to 16 and
qualitative results in Fig. 12.
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Category Class Definition Examples

human person1

All humans that would primarily rely on their legs
to move if necessary. Consequently, this label in-
cludes people who are standing/sitting, or other-
wise stationary. This class also includes babies,
people pushing a bicycle, or standing next to it
with both legs on the same side of the bicycle.

rider1

Humans relying on some device for move-
ment. This includes drivers, passengers, or riders
of bicycles, motorcycles, scooters, skateboards,
horses, Segways, (inline) skates, wheelchairs,
road cleaning cars, or convertibles. Note that a
visible driver of a closed car can only be seen
through the window. Since holes are considered
part of the surrounding object, the human is in-
cluded in the car label.

vehicle car1

This includes cars, jeeps, SUVs, vans with a con-
tinuous body shape (i.e. the driver’s cabin and
cargo compartment are one). Does not include
trailers, which have their own separate class.

truck1
This includes trucks, vans with a body that is sepa-
rate from the driver’s cabin, pickup trucks, as well
as their trailers.

bus1 This includes buses that are intended for 9+ per-
sons for public or long-distance transport.

train1 All vehicles that move on rails, e.g. trams, trains.

1 Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example.
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Category Class Definition Examples

vehicle motorcycle1
This includes motorcycles, mopeds, and scooters
without the driver or other passengers. The latter
receive the label rider.

bicycle1 This includes bicycles without the cyclist or other
passengers. The latter receive the label rider.

caravan1,2
Vehicles that (appear to) contain living quarters.
This also includes trailers that are used for living
and has priority over the trailer class.

trailer1,2
Includes trailers that can be attached to any vehi-
cle, but excludes trailers attached to trucks. The
latter are included in the truck label.

nature vegetation

Trees, hedges, and all kinds of vertically grow-
ing vegetation. Plants attached to build-
ings/walls/fences are not annotated separately,
and receive the same label as the surface they are
supported by.

terrain

Grass, all kinds of horizontally spreading vegeta-
tion, soil, or sand. These are areas that are not
meant to be driven on. This label may also in-
clude a possibly adjacent curb. Single grass stalks
or very small patches of grass are not annotated
separately and thus are assigned to the label of the
region they are growing on.

1 Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Category Class Definition Examples

construction building

Includes structures that house/shelter humans,
e.g. low-rises, skyscrapers, bus stops, car ports.
Translucent buildings made of glass still receive
the label building. Also includes scaffolding at-
tached to buildings.

wall
Individually standing walls that separate two (or
more) outdoor areas, and do not provide support
for a building.

fence
Structures with holes that separate two (or more)
outdoor areas, sometimes temporary.

guard rail2

Metal structure located on the side of the road to
prevent serious accidents. Rare in inner cities,
but occur sometimes in curves. Includes the bars
holding the rails.

bridge2
Bridges (on which the ego-vehicle is not driving)
including everything (fences, guard rails) perma-
nently attached to them.

tunnel2 Tunnel walls and the (typically dark) space en-
cased by the tunnel, but excluding vehicles.

1 Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)

vi



Category Class Definition Examples

object traffic sign

Front part of signs installed by the state/city au-
thority with the purpose of conveying information
to drivers/cyclists/pedestrians, e.g. traffic signs,
parking signs, direction signs, or warning reflec-
tor posts.

traffic light

The traffic light box without its poles in all orien-
tations and for all types of traffic participants, e.g.
regular traffic light, bus traffic light, train traffic
light.

pole

Small, mainly vertically oriented poles, e.g. sign
poles or traffic light poles. This does not in-
clude objects mounted on the pole, which have a
larger diameter than the pole itself (e.g. most street
lights).

pole group2
Multiple poles that are cumbersome to label indi-
vidually, but where the background can be seen in
their gaps.

sky sky Open sky (without tree branches/leaves)

1 Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Category Class Definition Examples

flat road

Horizontal surfaces on which cars usually drive,
including road markings. Typically delimited by
curbs, rail tracks, or parking areas. However, road
is not delimited by road markings and thus may
include bicycle lanes or roundabouts.

sidewalk

Horizontal surfaces designated for pedestrians or
cyclists. Delimited from the road by some obsta-
cle, e.g. curbs or poles (might be small), but not
only by markings. Often elevated compared to the
road and often located at the side of a road. The
curbs are included in the sidewalk label. Also in-
cludes the walkable part of traffic islands, as well
as pedestrian-only zones, where cars are not al-
lowed to drive during regular business hours. If
it’s an all-day mixed pedestrian/car area, the cor-
rect label is ground.

parking2

Horizontal surfaces that are intended for parking
and separated from the road, either via elevation
or via a different texture/material, but not sepa-
rated merely by markings.

rail track2

Horizontal surfaces on which only rail cars can
normally drive. If rail tracks for trams are embed-
ded in a standard road, they are included in the
road label.

1 Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Category Class Definition Examples

void ground2

All other forms of horizontal ground-level struc-
tures that do not match any of the above, for ex-
ample mixed zones (cars and pedestrians), round-
abouts that are flat but delimited from the road by
a curb, or in general a fallback label for horizon-
tal surfaces that are difficult to classify, e.g. due to
having a dual purpose.

dynamic2

Movable objects that do not correspond to any of
the other non-void categories and might not be in
the same position in the next day/hour/minute, e.g.
movable trash bins, buggies, luggage, animals,
chairs, or tables.

static2

This includes areas of the image that are diffi-
cult to identify/label due to occlusion/distance, as
well as non-movable objects that do not match
any of the non-void categories, e.g. mountains,
street lights, reverse sides of traffic signs, or per-
manently mounted commercial signs.

ego vehicle2

Since a part of the vehicle from which our data
was recorded is visible in all frames, it is assigned
to this special label. This label is also available at
test time.

unlabeled2 Pixels that were not explicitly assigned to a label.

out of roi2
Narrow strip of 5 pixels along the image borders
that is not considered for training or evaluation.
This label is also available at test-time.

rectification
border2

Areas close to the image border that contain ar-
tifacts resulting from the stereo pair rectification.
This label is also available at test time.

1 Single instance annotation available.
2 Not included in challenges.

Table 8. List of annotated classes including their definition and typical example. (continued)
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Largest number of instances and persons

Largest number of riders Largest number of cars

Largest number of bicycles Largest number of buses

Largest number of trucks Largest number of motorcycles

Large spatial variation of persons Fewest number of instances

Figure 7. Examples of our annotations on various images of our train and val sets. The images were selected based on criteria overlayed
on each image.
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static fine (SF) 80.0 13.2 40.3 0.0 0.0 0.0 0.0 0.0 12.5 0.0 22.1 0.0 0.0 23.4 0.0 0.0 0.0 0.0 0.0 10.1
static coarse (SC) 80.1 9.5 39.5 0.0 0.0 0.0 0.0 0.0 16.4 0.0 24.3 0.0 0.0 26.2 0.0 0.0 0.0 0.0 0.0 10.3
GT segmentation with SF 80.8 11.1 44.5 0.0 0.0 0.0 0.0 0.0 4.2 0.0 17.9 0.0 0.0 32.9 0.0 0.0 0.0 0.0 0.0 10.1
GT segmentation with SC 79.6 5.1 46.6 0.0 0.0 0.0 0.0 0.0 11.8 0.0 29.2 0.0 0.0 34.1 0.0 0.0 0.0 0.0 0.0 10.9

GT segmentation with [41] 99.3 91.9 94.8 44.9 62.0 66.1 81.2 84.3 96.5 80.1 99.1 90.6 69.2 98.0 59.0 66.9 71.6 66.8 85.8 79.4

GT subsampled by 2 99.6 98.1 98.6 97.8 97.4 90.4 94.1 95.2 98.7 97.6 98.3 96.5 95.7 98.9 98.9 99.1 98.9 96.5 95.8 97.2
GT subsampled by 4 99.4 96.8 98.0 96.1 95.5 83.1 89.7 91.6 98.0 96.0 97.9 94.1 92.5 98.2 98.1 98.5 98.1 94.1 93.0 95.2
GT subsampled by 8 98.6 93.4 95.4 92.3 91.1 69.5 80.9 84.2 95.5 92.1 94.5 88.9 86.1 96.2 95.9 96.7 96.1 88.7 86.8 90.7
GT subsampled by 16 97.8 88.8 93.1 86.9 84.9 50.9 68.4 73.0 93.4 86.5 93.1 81.0 76.0 93.5 93.0 94.4 93.4 80.8 78.0 84.6
GT subsampled by 32 96.0 80.9 88.7 77.6 75.2 30.9 51.6 56.8 89.2 77.3 88.7 69.4 62.3 88.0 87.4 89.8 88.5 68.6 65.6 75.4
GT subsampled by 64 92.1 69.6 83.0 65.5 61.0 14.8 32.1 37.6 83.3 65.2 81.6 55.1 46.4 78.8 78.9 82.4 80.2 54.2 50.7 63.8
GT subsampled by 128 86.2 55.0 75.2 51.3 45.9 5.7 13.6 17.9 75.2 51.6 69.9 41.1 31.5 67.3 66.3 70.1 68.3 36.0 33.3 50.6

nearest training neighbor 85.3 35.6 56.7 15.6 6.2 1.3 0.5 1.0 54.2 23.3 36.5 4.0 0.4 42.0 9.7 18.3 12.9 0.3 1.7 21.3

Table 9. Detailed results of our control experiments for the pixel-level semantic labeling task in terms of the IoU score on the class
level. All numbers are given in percent. See the main paper for details on the listed methods.
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static fine (SF) 0.0 0.0 38.0 0.0 0.0 0.0 0.0 0.0 4.7
static coarse (SC) 0.0 0.0 39.8 0.0 0.0 0.0 0.0 0.0 5.0
GT segmentation with SF 0.0 0.0 50.3 0.0 0.0 0.0 0.0 0.0 6.3
GT segmentation with SC 0.0 0.0 50.8 0.0 0.0 0.0 0.0 0.0 6.3

GT segmentation with [41] 68.3 44.4 92.8 32.3 38.7 41.5 39.5 63.1 52.6

GT subsampled by 2 91.4 91.9 95.1 93.3 94.1 94.3 91.4 89.6 92.6
GT subsampled by 4 88.1 86.4 94.4 91.8 93.1 93.0 88.9 87.2 90.4
GT subsampled by 8 78.4 75.6 89.7 85.7 87.8 88.8 79.4 76.8 82.8
GT subsampled by 16 63.5 58.5 82.6 73.4 78.2 81.5 66.4 62.3 70.8
GT subsampled by 32 45.5 38.0 71.0 57.7 62.1 66.0 46.2 43.5 53.7
GT subsampled by 64 28.4 19.1 51.0 37.0 42.0 51.4 27.6 24.4 35.1
GT subsampled by 128 19.1 10.5 41.9 18.9 24.5 30.7 11.0 11.8 21.1

nearest training neighbor 3.6 0.5 32.7 1.9 4.0 2.8 0.3 1.5 5.9

Table 10. Detailed results of our control experiments for the pixel-level semantic
labeling task in terms of the instance-normalized iIoU score on the class level.
All numbers are given in percent. See the main paper for details on the listed
methods.
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FCN-32s X X 97.1 76.0 87.6 33.1 36.3 35.2 53.2 58.1 89.5 66.7 91.6 71.1 46.7 91.0 33.3 46.6 43.8 48.2 59.1 61.3
FCN-16s X X 97.3 77.6 88.7 34.7 44.0 43.0 57.7 62.0 90.9 68.6 92.9 75.4 50.5 91.9 35.3 49.1 45.9 50.7 65.2 64.3
FCN-8s X X 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3
FCN-8s X X 2 97.0 75.4 87.3 37.4 39.0 35.1 47.7 53.3 89.3 66.1 92.5 69.5 46.0 90.8 41.9 52.9 50.1 46.5 58.4 61.9
FCN-8s X 95.9 69.7 86.9 23.1 32.6 44.3 52.1 56.8 90.2 60.9 92.9 73.3 42.7 89.9 22.8 39.2 29.6 42.5 63.1 58.3
FCN-8s X 95.3 67.7 84.6 35.9 41.0 36.0 44.9 52.7 86.6 60.2 90.2 59.6 37.2 86.1 35.4 53.1 39.7 42.6 52.6 58.0

[4] ext. X 4 95.6 70.1 82.8 29.9 31.9 38.1 43.1 44.6 87.3 62.3 91.7 67.3 50.7 87.9 21.7 29.0 34.7 40.5 56.6 56.1
[4] basic X 4 96.4 73.2 84.0 28.5 29.0 35.7 39.8 45.2 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.2 35.8 51.9 57.0
[40] X X X 3 96.3 71.7 86.7 43.7 31.7 29.2 35.8 47.4 88.4 63.1 93.9 64.7 38.7 88.8 48.0 56.4 49.4 38.3 50.0 59.1
[81] X 2 96.3 73.9 88.2 47.6 41.3 35.2 49.5 59.7 90.6 66.1 93.5 70.4 34.7 90.1 39.2 57.5 55.4 43.9 54.6 62.5
[9] X X 2 97.3 77.7 87.7 43.6 40.5 29.7 44.5 55.4 89.4 67.0 92.7 71.2 49.4 91.4 48.7 56.7 49.1 47.9 58.6 63.1
[48] X X X 2 97.4 78.3 88.1 47.5 44.2 29.5 44.4 55.4 89.4 67.3 92.8 71.0 49.3 91.4 55.9 66.6 56.7 48.1 58.1 64.8
[37] X 97.3 78.5 88.4 44.5 48.3 34.1 55.5 61.7 90.1 69.5 92.2 72.5 52.3 91.0 54.6 61.6 51.6 55.0 63.1 66.4
[79] X 97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4 93.7 78.9 55.0 93.3 45.5 53.4 47.7 52.2 66.0 67.1

Table 11. Detailed results of our baseline experiments for the pixel-level semantic labeling task in terms of the IoU score on
the class level. All numbers are given in percent and we indicate the used training data for each method, i.e. train fine, val
fine, coarse extra, as well as a potential downscaling factor (sub) of the input image. See the main paper and Appendix D.1 for
details on the listed methods.
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FCN-32s X X 46.9 32.0 82.1 21.2 28.8 21.9 26.0 47.1 38.2
FCN-16s X X 53.6 33.5 84.2 21.3 32.8 25.8 28.9 48.6 41.1
FCN-8s X X 55.9 33.4 83.9 22.2 30.8 26.7 31.1 49.6 41.7
FCN-8s X X 2 42.8 22.3 79.3 16.6 27.3 22.2 20.0 38.5 33.6
FCN-8s X 51.8 31.0 80.6 17.0 23.9 24.5 23.7 47.3 37.4
FCN-8s X 43.2 18.9 72.5 18.2 24.2 20.1 20.9 36.2 31.8

[4] extended X 4 49.9 27.1 81.1 15.3 23.7 18.5 19.6 38.4 34.2
[4] basic X 4 44.3 22.7 78.4 16.1 24.3 20.7 15.8 33.6 32.0
[40] X X X 3 38.9 12.8 78.6 13.4 24.0 19.2 10.7 27.2 28.1
[81] X 2 50.6 17.8 81.1 18.0 25.0 30.3 22.3 30.1 34.4
[9] X X 2 40.5 23.3 78.8 20.3 31.9 24.8 21.1 35.2 34.5
[48] X X X 2 40.7 23.1 78.6 21.4 32.4 27.6 20.8 34.6 34.9
[37] X 56.2 38.0 77.1 34.0 47.0 33.4 38.1 49.9 46.7
[79] X 56.3 34.5 85.8 21.8 32.7 27.6 28.0 49.1 42.0

Table 12. Detailed results of our baseline experiments for the pixel-level semantic
labeling task in terms of the instance-normalized iIoU score on the class level. All
numbers are given in percent and we indicate the used training data for each method,
i.e. train fine, val fine, coarse extra, as well as a potential downscaling factor (sub)
of the input image. See the main paper and Appendix D.1 for details on the listed
methods.
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P

MCG regions FRCN 1.9 1.0 6.2 4.0 3.1 2.8 1.5 0.6 2.6
MCG bboxes FRCN 0.5 0.1 7.8 6.4 10.3 4.5 0.9 0.2 3.8
MCG hulls FRCN 1.3 0.6 10.5 6.1 9.7 5.9 1.7 0.5 4.6

GT bboxes FRCN 7.6 0.5 17.5 10.7 15.7 8.4 2.6 2.9 8.2
GT regions FRCN 65.5 40.6 65.9 21.1 31.9 30.2 28.8 46.4 41.3

MCG regions GT 3.7 4.4 11.9 19.9 21.5 12.4 7.8 2.6 10.5
MCG bboxes GT 2.0 2.0 10.9 18.2 22.1 15.9 6.0 2.2 9.9
MCG hulls GT 3.4 4.1 13.4 20.4 24.1 16.0 8.3 2.8 11.6

Table 13. Detailed results of our baseline experiments for the instance-level se-
mantic labeling task in terms of the region-level average precision scores AP on
the class level. All numbers are given in percent. See the main paper and Ap-
pendix D.2 for details on the listed methods.
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MCG regions FRCN 6.7 5.4 19.3 10.3 11.9 7.6 7.8 3.0 9.0
MCG bboxes FRCN 2.7 0.6 23.3 15.4 27.2 15.2 4.8 1.4 11.3
MCG hulls FRCN 5.6 3.9 26.0 13.8 26.3 15.8 8.6 3.1 12.9

GT bboxes FRCN 35.4 4.3 44.9 19.3 29.9 26.7 11.9 16.7 23.7
GT regions FRCN 65.5 40.6 65.9 21.1 31.9 30.2 28.8 46.4 41.3

MCG regions GT 12.3 18.1 29.6 43.9 44.6 31.4 25.9 10.0 27.0
MCG bboxes GT 9.2 11.5 29.0 41.8 46.0 36.0 23.3 9.6 25.8
MCG hulls GT 12.0 18.4 31.4 46.1 46.3 40.7 27.7 10.7 29.1

Table 14. Detailed results of our baseline experiments for the instance-level seman-
tic labeling task in terms of the region-level average precision scores AP50% for an
overlap value of 50%. All numbers are given in percent. See the main paper and
Appendix D.2 for details on the listed methods.
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MCG regions FRCN 3.7 1.6 10.2 6.8 5.4 4.2 2.2 1.1 4.4
MCG bboxes FRCN 0.9 0.1 12.9 11.3 18.5 6.9 1.3 0.3 6.5
MCG hulls FRCN 2.6 1.1 17.5 10.6 17.4 9.2 2.6 0.9 7.7

GT bboxes FRCN 8.8 0.8 25.3 18.4 27.1 13.0 3.9 3.6 12.6
GT regions FRCN 79.1 66.0 78.9 33.6 53.9 47.1 42.6 63.5 58.1

MCG regions GT 6.8 6.8 18.9 28.7 32.7 19.0 10.5 4.3 16.0
MCG bboxes GT 3.5 2.9 17.3 27.3 34.5 24.9 8.2 3.7 15.3
MCG hulls GT 6.1 6.2 21.4 29.9 37.2 24.7 11.4 4.7 17.7

Table 15. Detailed results of our baseline experiments for the instance-level se-
mantic labeling task in terms of the region-level average precision scores AP100m

for objects within 100m. All numbers are given in percent. See the main paper
and Appendix D.2 for details on the listed methods.
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MCG regions FRCN 4.0 1.7 12.0 9.0 7.8 6.4 2.4 1.1 5.5
MCG bboxes FRCN 1.0 0.1 15.5 14.9 27.7 10.0 1.4 0.4 8.9
MCG hulls FRCN 2.7 1.1 21.2 14.0 25.2 14.2 2.7 1.0 10.3

GT bboxes FRCN 8.5 0.8 26.6 23.2 37.2 17.7 4.1 3.6 15.2
GT regions FRCN 79.1 68.3 80.5 42.9 69.4 67.9 46.2 64.7 64.9

MCG regions GT 7.2 7.0 21.7 32.4 42.4 23.6 11.1 4.5 18.7
MCG bboxes GT 3.7 3.0 19.9 33.0 46.0 32.9 8.6 3.8 18.9
MCG hulls GT 6.5 6.4 24.8 35.4 49.6 31.8 12.2 4.9 21.4

Table 16. Detailed results of our baseline experiments for the instance-level se-
mantic labeling task in terms of the region-level average precision scores AP50m

for objects within 50m. All numbers are given in percent. See the main paper and
Appendix D.2 for details on the listed methods.
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Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 8. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The image
is part of our test set and has both, the largest number of instances and persons.
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Image Annotation

FCN-32s FCN-8s

FCN-8s half resolution FCN-8s trained on coarse

SegNet basic [4] DPN [40]

CRF as RNN [81] DeepLab LargeFOV StrongWeak [48]

Adelaide [37] Dilated10 [79]

Figure 9. Exemplary output of our baselines for the pixel-level semantic labeling task, see the main paper for details. The image is part of
our test set and has both, the largest number of instances and persons.
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Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 10. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The
image is part of our test set and has the largest number of car instances.
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Image Annotation

FCN-32s FCN-8s

FCN-8s half resolution FCN-8s trained on coarse

SegNet basic [4] DPN [40]

CRF as RNN [81] DeepLab LargeFOV StrongWeak [48]

Adelaide [37] Dilated10 [79]

Figure 11. Exemplary output of our baseline experiments for the pixel-level semantic labeling task, see the main paper for details. The
image is part of our test set and has the largest number of car instances.
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Largest number of instances and persons Annotation

FRCN + MCG bboxes FRCN + MCG regions

FRCN + GT bboxes FRCN + GT regions

Largest number of cars Annotation

FRCN + MCG bboxes FRCN + MCG regions

FRCN + GT bboxes FRCN + GT regions

Figure 12. Exemplary output of our control experiments and baselines for the instance-level semantic labeling task, see the main paper for
details.
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